Abstract
The report ofan anomalously intense He4+ peak in electron impact mass spectra of large helium dropletscreated a stir 3 decades ago that continues to this day. When the electron kinetic energy exceeds 41 eV, an additional pathway opens that yields He4+ predominantly in an electronically excited metastable state. A pair of He*(23 S) atoms has been implicated based on the isolated He* energy of 19.82 eV and the 41 eV threshold, and the creation of He4+ has been conjectured to proceed via a pair of He2*( a3Σ u+) precursors. The mechanism whereby He* converts to He2* in liquid helium has remained a mystery, however. High level ab initio theory combined with classical molecular dynamics has been applied to systems comprising small numbers of He atoms. The conversion of He* to He2* in such systems is shown to be due to a simple many-body effect that yields He2* rapidly and efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.