Abstract

Enzymatic conversion of brain glycosylphosphatidylinositol-linked alkaline phosphatase (GPI-AP), amphiphilic, was examined. When GPI-AP was incubated with glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a negligible conversion of GPI-AP to hydrophilic form was observed. The inclusion of monoacylglycerols enhanced the enzymatic conversion, although the action of monoacylglycerols differed greatly according to the size of acyl group; the enzymatic conversion was enhanced considerably in the presence of monoacylglycerols possessing acyl group of longer chain length (C10-C18), while monoacylglycerols with acyl moiety of shorter length (C4-C8) did fail to augment the enzymatic conversion. Noteworthy, monooleoylglycerol was much more effective than the other monoacylglycerols in promoting the enzymatic conversion, indicating a beneficial role of the unsaturation in acyl chain. Meanwhile, ionic amphiphiles such as monohexadecyllysophosphatidylcholine and palmitoyl-carnitine decreased the enzymatic conversion of GPI-AP in a concentration-dependent manner, with monohexadecyllysophosphatidylcholine being more inhibitory than palmitoylcarnitine. Separately, when GPI-AP was exposed to various oxidants prior to the incubation with GPI-PLD, a remarkable decrease of the enzymatic conversion was observed with hypochlorite and peroxynitrite generators, but not H2O2. In further study, hypochlorite was found to inactivate GPI-PLD at low concentrations (3 to approximately 100 microM). From these results, it is suggested that the enzymatic conversion of GPI-AP by GPI-PLD may be regulated in vivo system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.