Abstract

This article presents research related to the transformation of geraniol (GA), leading to the formation of products with very valuable properties. In the planned method, heterogeneous catalysts of natural origin in the form of alum and diatomite were used as catalysts. Initially, the process which we investigated was the process of isomerization of GA, but it turned out during the studies that GA is also transformed in other reactions. Before catalytic tests, these two minerals were subjected to detailed instrumental analyses using the following methods: XRD, SEM/EDX, XRF and FTIR, which allowed to obtain their full morphological characteristics. During the catalytic tests, the influence of such relevant parameters on the GA transformations was determined: temperature from 80 to 150 °C, catalyst content from 5 to 15% by weight and the reaction time from 15 min to 24 h. The tests presented in the article were carried out under atmospheric pressure (in air) as well as without the use of a solvent. The optimal conditions for the transformations of GA were determined on the basis of its conversion and selectivities of transformation to the main products in the form of: beta-pinene (BP), 6,11-dimethyl-2,6,10-dodecatriene-1-ol (DC) and thumbergol (TH). The above products were formed with the highest selectivity, respectively: 100 mol%, 50 mol% and 52 mol%. The results of the syntheses showed that for GA the best transformation results were obtained at the temperature of 80 °C (for both tested catalysts), with the catalyst content of 1 wt % (for both tested catalysts) and for the reaction time of 1 h (for diatomite)) and 3 h (for alum).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.