Abstract

The results of a study on the activity and operational stability of an Au–Pd/MFI/Al2O3 catalyst in the reaction of ethanol conversion into a gasoline fraction of hydrocarbons are reported. In the presence of the Au–Pd/MFI/Al2O3 catalyst, ethanol was almost completely converted into an alkane–aromatic fraction of C3–C11 hydrocarbons at 300°C in an atmosphere of Ar; the yield of this fraction was as high as 90% on a feed carbon basis. It was established that, in the presence of the bimetallic Au–Pd catalyst, the yield of the target fraction increased by 10%, as compared with that on a monometallic Au-containing sample. The Au–Pd/MFI/Al2O3 catalyst exhibited much higher stability in a long-term experiment in comparison with the previously tested pilot sample of Pd–Zn/MFI/Al2O3. After a 40-h operation, the yield of the target fraction of C3+ hydrocarbons in the presence of the Au–Pd/MFI/Al2O3 catalyst decreased by 15%. The treatment of the catalyst with hydrogen led to the complete restoration of its activity. The structure of the Au–Pd active constituents was studied by transmission electron microscopy X-ray photoelectron spectroscopy. methods of the and microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.