Abstract
Combustion processes of gaseous fuel (propane) without and with addition of various amounts of diethylamine in fluidized bed, made of chemically active calcium oxide, were run and studied. On the basis of registered temperature, dynamic pressure in reaction zone and composition of exhaust fumes, analysis of diethylamine conversion into nitrogen oxides and its influence on kinetics of propane combustion process was carried out. The complexity of solid fuels (alternative or biomass which can contain large amount of nitrogen compounds in a form of amines, heterocyclic compounds, amino acids etc.) combustion caused that at this phase of researches, incineration of gaseous fuel was run. Amine was dosed into the reaction zone in such amounts, which could give similar nitrogen oxides concentration in exhaust fumes, to those registered from combustion of alternative fuels with high nitrogen content (circa: 900, 1800, 3250 ppm). Results of experimental works revealed that up to 78% of nitrogen compound was converted to NxOy. The conversion rate was higher when greater amounts of (C2H5)2NH were dosed into reaction zone. The main nitrogen oxide created within combustion was nitric oxide, which constituted more than 95% of total NxOy. The remaining amount of amine was converted into nitrogen. (C2H5)2NH influenced on kinetics of the propane combustion process in noticeable way, but this impact was also limited. Diethylamine and products of its conversion, such as radicals present in the combustion zone, influenced on oxidization reactions of carbon monoxide and volatile organic compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.