Abstract

This paper presents a model-based analysis of a process coupling trireforming and Fischer–Tropsch technologies for the production of liquid fuels from CO2-rich natural gas. The process also includes an upgrading section based on hydrocracking, a separation section, a water gas shift unit, and a Rankine cycle unit for recovering the excess thermal energy produced by the Fischer–Tropsch reactor. Simulations are carried out in the process simulator Aspen Plus using standard unit operation models where applicable, while modeling the nonconventional units, such as the Fischer–Tropsch and hydrocracking reactors, using Aspen Custom Modeler. The proposed process could achieve a carbon conversion efficiency upward of 50% in the analyzed scenario, despite a natural gas feedstock with 30 mol % CO2. The analysis also reveals that the plant-wide electricity consumption could be covered nearly entirely by the Rankine cycle unit, enabling significant cost savings alongside a reduction of the overall global warming poten...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.