Abstract

Rotation of cytochrome P-450 was examined in bovine adrenocortical mitochondria before and after an enzymatic transformation of cholesterol into pregnenolone by cytochrome P-450scc in the presence of malate. Rotational diffusion was measured by observing the decay of absorption anisotropy, r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. Analysis of r(t) was based on a "rotation-about-membrane normal" model. The measurements were used to investigate substrate-dependent intermolecular interactions of cytochrome P-450 with other redox components. Rotational mobility of cytochrome P-450 was significantly dependent on the decrease in cholesterol content by side chain cleavage reaction catalyzed by cytochrome P-450scc. In a typical experiment, the observed value for the normalized time-independent anisotropy r(infinity)/r(0) was decreased from 0.78 in control mitochondria to 0.60 after conversion of 21% of cholesterol to pregnenolone, while no significant change was observed for the average rotational relaxation time phi of about 700 microseconds. Significantly high values of r(infinity)/r(0) = 0.78 and 0.60 imply co-existence of mobile and immobile populations of cytochrome P-450. Since we observed that the heme angle tilted 55 degrees from membrane plane, 22% (control mitochondria) and 40% (after conversion of cholesterol to pregnenolone) of cytochrome P-450 in mitochondria are calculated to be mobile in the preparation. The significant mobilization of cytochrome P-450scc molecules caused by the conversion of cholesterol to pregnenolone is likely due to changes in protein-protein interactions with its redox partners, since the lipid fluidity was kept unchanged by the cholesterol depletion.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.