Abstract

A class of nonlinear, stochastic staticization control problems (including minimization problems with smooth, convex, coercive payoffs) driven by diffusion dynamics with constant diffusion coefficient is considered. A fundamental solution form is obtained where the same solution can be used for a limited variety of terminal costs without re-solution of the problem. One may convert this fundamental solution form from a stochastic control problem form to a deterministic control problem form. This yields an equivalence between certain second-order (in space) Hamilton-Jacobi partial differential equations (HJ PDEs) and associated first-order HJ PDEs. This reformulation has substantial numerical implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call