Abstract
Sialic acids are prominent termini of mammalian glycoconjugates and are key binding determinants for cell-cell recog-nition lectins. Binding of the sialic acid-dependent lectin, myelin-associated glycoprotein (MAG), to nerve cells is implicated in the inhibition of nerve regeneration after injury. Therefore, blocking MAG binding to nerve cell sialoglycoconjugates might enhance nerve regeneration. Previously, we reported that certain sialoglycoconjugates bearing N-acetylneuraminic acid (NeuAc) but not N-glycolylneuraminic acid (NeuGc) support MAG binding (Collins et al., 1997a). We now report highly efficient conversion of sialic acids on living neural cells from exclusively NeuAc to predominantly NeuGc using a novel synthetic metabolic precursor, N-glycolylmannosamine pentaacetate (Man-NGc-PA). When NG108-15 neuroblastoma-glioma hybrid cells, which normally express only NeuAc (and bind to MAG), were cultured in the presence of 1 mM ManNGcPA, they expressed 80-90% of their sialic acid precursor pool as NeuGc within 24 h. Within 5 days, 80% of their ganglioside-associated sialic acids and 70% of their glycoprotein-associated sialic acids were converted to NeuGc. Consistent with this result, treatment of NG108-15 cells with ManNGcPA resulted in nearly complete abrogation of MAG binding. These results demonstrate that ManNGcPA treatment efficiently alters the sialic acid structures on living cells, with a commensurate change in recognition by a physiologically important lectin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.