Abstract
Citric acid is mainly produced in the fermentation industry, which needs complex processes and produces a high amount of CaSO4 as waste. In this study, CO2 has been used to convert calcium citrate to citric acid and CaCO3 by controlling the reaction parameters (reactants ratio, temperature, and pressure). The CaCO3 produced in this conversion could further be used in the fermentation industry for citric acid production. The transformation condition has been optimized by controlling temperature, pressure, reaction time, and mass ratio of calcium citrate and water. The highest conversion could reach up to 94.7% under optimal experimental conditions of 18 MPa of pressure, 65 °C of reaction temperature, 4 h of reaction time, and 2 g/L of calcium citrate/water suspension solution. This method features simple process, easy separation of citric acid, and environmentally friendly process, which could be a potentially alternative route for downstream treatment in fermentation production of citric acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.