Abstract

It was found that the preliminarily reduced commercial platinum–rhenium catalyst PR-71 exhibited high activity in the conversion of ethanol into C4–C12 olefins and in the cross-condensation reactions of ethanol with glycerol, acetone, n-propanol, and isopropanol. Acetone and glycerol exhibited the highest reactivity in the cross-condensation reactions; this manifested itself in an increase in the total yield of the target fraction of C4–C12 hydrocarbons and in a more than 10-fold increase in the yield of products containing the odd numbers of carbon atoms, as compared with the conversion of individual ethanol. The structural studies performed by extended X-ray absorption fine structure (EXAFS) spectroscopy and transmission electron microscopy showed that the high selectivity of PR-71 can be caused by the formation of bimetallic Pt–Re and Pt–Al clusters in the course of the prolonged preliminary reduction of the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.