Abstract

Rust powder collected from an archeological iron was evaluated by complementary analyses such as FTIR, XRD, XRF, and SEM/EDX. The analyses revealed that lepidocrocite (L) was the major component in the archeological iron. Coconut husk (CH) can be classified as a type of lignocellulosic biomass of renewable resources that are widely available, especially in coastal areas. In this research, the isolated lignin extracted from CH is being studied as a potential alternative for environmentally friendly applications. The isolated lignin from soda and organosolv pulping went through several analyses such as FTIR, NMR (13C and 2D-HSQC), and TGA analyses. The analyses showed that lignin isolated via soda pulping has superior antioxidant capabilities due to its greater phenolic-OH content compared to lignin isolated from organosolv pulping. The effects of lignin concentrations, pH, and reaction time were utilized in rust conversion studies of an archeological iron. 5 wt% of soda lignin (SL) was revealed as the ideal condition in this rust conversion study with a value of 84.21 %. The treated rust powder with 5 wt% of SL was then further gone through several complementary analyses, which revealed that the treated rust had nearly transformed into an amorphous state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call