Abstract

Complementarity determining region (CDR) transplant studies were conducted between two monoclonal antibodies of distinctly different specificities (anti-fluorescein monoclonal antibody (mAb) 4-4-20 and anti-single-stranded DNA (ssDNA) mAb 04-01) which possessed nearly identical light chains but dissimilar heavy chains. The variations in binding specificities between the two immunoglobulins suggested that the active-site features of anti-fluorescein antibodies were dictated by characteristics intrinsic to the heavy chain (H-chain). To identify specific regions of the H-chain which influence the structure and function of an anti-fluorescein active site, CDR transplantation was systematically employed to convert the anti-ssDNA 04-01 antibody active site to an active site with anti-fluorescein activity. Each mAb 4-4-20 H-chain CDR (HCDR) was transplanted into the H-chain of a single-chain derivative of the 04-01 molecule. A fluorescence polarization ligand binding assay was utilized to determine the equilibrium dissociation constant, Kd, of hybrid transplant single-chain antibody HCDR1-HCDR2-HCDR3(4-4-20) for fluorescein (3.8 x 10(-7) M, indicating successful conversion of an anti-ssDNA active site to an anti-fluorescein binding site. A similar Kd (6.3 x 10(-7) M) was determined using a fluorescein fluorescence quenching assay. The transplantation results are discussed in terms of the relative contribution of each HCDR to a successful conversion in antibody specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.