Abstract

Amyloid species with various morphologies have been found for different proteins and disease systems. In this article, we aim to ask if these morphologies are unique to a particular protein or if they convert from one to another. Using a heme protein containing iron as the transition-metal activator of aggregation and a negatively charged surfactant, partial unfolding of the protein and its aggregation have been induced. In the pathway of aggregation, we have observed the formation of several morphological structures of a single protein, which were visualized directly using atomic force microscopy (AFM). These structures have been found to appear and disappear with time, and their formation could be monitored under normal buffer conditions and at room temperature without requiring any sophisticated chemical or biological methodologies. In addition, we have observed the formation of honeycomb-shaped morphology, which may serve as an intermediate. These amyloid-based nanostructures may have the potential to be explored in therapeutics delivery and other biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.