Abstract

Biomass, the feedstock for biocrude and ultimately renewable diesel is a low energy density feedstock. The transport of this feedstock over long distance has been proven to be a major burden on the commercialisation of biorefining. Therefore, it has been generally accepted that biomass should be upgraded to biocrude (a relatively high energy density liquid) in close proximity to the biomass sources. The biocrude liquid would then be transported to a biorefinery. Biocrude contains large amounts of oxygen (generally up to 38 wt%) that is removed from the crude in the refining process. In this study, we have synthesised a range of spinel oxide based catalysts to remove oxygen from the biocrude during the catalytic fast pyrolysis. The activity of spinel oxide (MgB2O4 where B = Fe, Al, Cr, Ga, La, Y, In) catalysts were screened for the pyrolysis reaction. While all the tested spinel oxides deoxygenated the pyrolysis vapour, MgCr2O4 was found to be effective in terms of oxygen removal efficiency relative to the quantity of bio oil produced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call