Abstract

The model, which confirms that the interaction of trapped positive charges (hydrogenous species) in the oxide and electrons from the substrate is an important component of radiation-induced interface-trap buildup, is presented. The “one-to-Koi” relationship between the number of trapped holes annealed and number of interface-trap generated is used for prediction of MOS device response in space environment. The model of enhanced low dose rate effect (ELDRS) is proposed. ELDRS conversion model is based on the assumption that there are two types of traps: shallow and deep. The time constants of these traps are different and correspond to interface-trap buildup at high dose rates for shallow traps and at low dose rates for deep traps. The possible physical mechanism of ELDRS effect elimination in the silicon-germanium (SiGe) bipolar transistors is described. The original mechanism of interface-trap buildup saturation based on radiation-induced charge neutralization (RICN) effect is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.