Abstract

An ozone-oyster shell fixed-bed bioreactor (OFBR) and a membrane bioreactor (MBR) were constructed and operated for about half a year for the deep treatment of municipal tail water. Pilot-scale test results showed that the combined OFBR-MBR had high removal efficiencies for carbon, ammonium, and phosphorus, and mean removal efficiencies for chemical oxygen demand, ammonium, total nitrogen, and total phosphorus (TP) were 75%, 99%, 20%, and 40%, respectively. Refractory organics in the municipal tail water were transformed to biodegradable organics in the OFBR, and the MBR effectively intercepted the surplus micro-molecular organics and microbes. Ammonium was mostly converted to nitrate, ∼10% of which was released as nitrogen gas through nitrification and denitrification by commonly known aerobic ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and denitrifying bacteria in the OFBR-MBR. The sludge was enriched in TP, which could be removed via surplus sludge discharge when sludge loading increased to overload amounts. Total removal depended on the uptake of phosphorus-accumulating organisms in the aerobic phase. Conversion mechanisms of carbon, nitrogen, and phosphorus in the OFBR-MBR system might be further adjusted to optimize process operation parameters, which might result in greater application of this system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call