Abstract

A conversion matrix approach to solving network problems involving time-varying circuit components is applied to the method of moments for electromagnetic scattering analysis. Detailed formulations of this technique's application to the scattering analysis of structures loaded with time-varying circuit networks or constructed from general time-varying media are presented. The computational cost of the method is discussed, along with an analysis of compression techniques capable of significantly reducing computational cost for partially loaded systems. Several numerical examples demonstrate the capabilities of the technique along with its validation against conventional methods of modeling time-varying electromagnetic systems, such as finite difference time domain and transient circuit co-simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.