Abstract

For dose management of CT, the ratio of effective dose (ED) to dose length product (DLP) is often used to convert DLP to ED. We evaluated this ratio in the CT component of whole-body PET/CT performed under various imaging conditions to determine a practical method for ED estimation applicable to PET/CT. In total, 400 patients who underwent whole-body PET/CT were enrolled. The imaging conditions were variable in terms of the scanner model, setting of automatic exposure control (AEC) setting and arm positioning. The scan range was divided into six anatomical regions. DLP was calculated for each region, and multiplied by the conversion factor for the respective region to determine regional ED. The six regional EDs were summed together to determine ED by the regional DLP method (EDrDLP). Additionally, regional ED was assessed using CT-Expo, software dedicated to CT dose estimation, and the total of six regional EDs were defined as ED by the CT-Expo method (EDCT-Expo). EDrDLP/DLP and EDCT-Expo/DLP were calculated using DLP automatically provided by the scanner. EDrDLP/DLP ranged from 0.0121 to 0.0128mSv/mGy/cm with the arms up and from 0.0127 to 0.0134mSv/mGy/cm with the arms down. Putting the arms down slightly increased EDrDLP/DLP, presumably due to an increased contribution of the chest and abdomen to total radiation exposure. The AEC setting and scanner model also influenced EDrDLP/DLP significantly but slightly. EDCT-Expo/DLP showed apparent scanner dependence, which appeared mainly attributable to differences in the constants used for DLP calculation between the scanner and CT-Expo. Multiplication of scanner-derived DLP by a conversion factor of 0.013mSv/mGy/cm provides acceptable ED estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call