Abstract

BackgroundThe study objective was to establish the local effect model (LEM) rectum constraints for 12-, 8-, and 4-fraction carbon-ion radiotherapy (CIRT) in patients with localized prostate carcinoma (PCA) using microdosimetric kinetic model (MKM)-defined and LEM-defined constraints for 16-fraction CIRT.MethodsWe analyzed 40 patients with PCA who received 16- or 12-fraction CIRT at our center. Linear-quadratic (LQ) and RBE-conversion models were employed to convert the constraints into various fractionations and biophysical models. Based on them, the MKM LQ strategy converted MKM rectum constraints for 16-fraction CIRT to 12-, 8-, and 4-fraction CIRT using the LQ model. Then, MKM constraints were converted to LEM using the RBE-conversion model. Meanwhile the LEM LQ strategy converted MKM rectum constraints for 16-fraction CIRT to LEM using the RBE-conversion model. Then, LEM constraints were converted from 16-fraction constraints to the rectum constraints for 12-, 8-, and 4-fraction CIRT using the LQ model. The LEM constraints for 16- and 12-fraction CIRT were evaluated using rectum doses and clinical follow-up. To adapt them for the MKM LQ strategy, CNAO LEM constraints were first converted to MKM constraints using the RBE-conversion model.ResultsThe NIRS (i.e. DMKM|v, V-20%, 10%, 5%, and 0%) and CNAO rectum constraints (i.e. DLEM|v, V-10 cc, 5 cc, and 1 cc) were converted for 12-fraction CIRT using the MKM LQ strategy to LEM 37.60, 49.74, 55.27, and 58.01 Gy (RBE), and 45.97, 51.70, and 55.97 Gy (RBE), and using the LEM LQ strategy to 39.55, 53.08, 58.91, and 61.73 Gy (RBE), and 49.14, 55.30, and 59.69 Gy (RBE). We also established LEM constraints for 8- and 4-fraction CIRT. The 10-patient RBE-conversion model was comparable to 30-patient model. Eight patients who received 16-fraction CIRT exceeded the corresponding rectum constraints; the others were within the constraints. After a median follow-up of 10.8 months (7.1–20.8), No ≥ G1 late rectum toxicities were observed.ConclusionsThe LEM rectum constraints from the MKM LQ strategy were more conservative and might serve as the reference for hypofractionated CIRT. However, Long-term follow-up plus additional patients is necessary.

Highlights

  • The study objective was to establish the local effect model (LEM) rectum constraints for 12, 8, and 4-fraction carbon-ion radiotherapy (CIRT) in patients with localized prostate carcinoma (PCA) using microdosimetric kinetic model (MKM)-defined and LEM-defined constraints for 16-fraction CIRT

  • We developed three RBE-conversion model [Gy (RBE)-conversion models respectively for 12-fraction CIRT with MKM prescriptions 5.3 Gy (RBE)/fx, for 8-fraction CIRT with MKM prescription 7.0 Gy (RBE)/fx, and for 4-fraction CIRT with MKM prescription 10.0 Gy (RBE)/fx

  • The dose-volume histograms (DVH) parameters for two patients who received 12-fraction CIRT were within the LEM constraints for the 12-fraction CIRT using the MKM LQ strategy

Read more

Summary

Introduction

The study objective was to establish the local effect model (LEM) rectum constraints for 12-, 8-, and 4-fraction carbon-ion radiotherapy (CIRT) in patients with localized prostate carcinoma (PCA) using microdosimetric kinetic model (MKM)-defined and LEM-defined constraints for 16-fraction CIRT. Radiotherapy is a curative treatment for localized prostate carcinoma (PCA). Proton or carbon-ion radiotherapy (CIRT)—which feature reduced radiation of the rectum and bladder— might be more effective and safe, especially for hypofractionated CIRT [2]. The rectal constraints were converted to 16-fractions. They found that the local control was the same as before, while late toxicity (≥ G1) was further reduced to be < 10%.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call