Abstract

The paper studies the Raman quantum memory protocol as applied to quantum light with orbital angular momentum. The memory protocol is implemented on an ensemble of three-level cold atoms with the $\Lambda$- configuration of energy levels. The possibility of storing quantum statistics of light with an orbital momentum is analysed in the case when the driving field could be treated as a plane wave. The efficiency analysis shows that examined storage/retrieval processes do not cause the efficiency decreasing compared with the spatial multimode memory protocol considered in [Golubeva et al. 2012]]. We also present an effective transformation of the orbital angular momentum of a quantum field on a memory cell using the driving field with orbital angular momentum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call