Abstract
Anaerobic sludge from sewage treatment was employed to derive a microbial colony that is capable of anaerobic oxidation of methane coupled with sulfate reduction and denitrification. Investigations revealed that methane can be oxidized with sulfate reduction and denitrification. When sulfate and nitrite acted as electron acceptors together, the rates and amount of methane conversion were higher than that when sulfate or nitrite alone was employed as an electron acceptor. The oxidation rate and amount of methane conversion reached 1.9 mg/(d•gVSS) and 22.24 mg, respectively. Methanotrophic bacteria, such as M. oxyfera, and Methylocystis sp., sulfate-reducing bacteria (SRB), e.g. Desulfosporosinus sp., and Desulfuromonas sp.; and denitrification bacteria, such as Hyphomicrobium sp., and Diaphorobacter sp., presented in the bacterial community. Anaerobic methanotrophic archaea (ANME), including Methanosaeta sp. and Methanobacterium sp. were found in the archaeal community. These findings indicate the coexistence of ANME, SRB and denitrification bacteria in the system. Nitrite reduction coupled with methane oxidation was performed independently by M. oxyfera during which limited oxygen generated. The oxygen released may be utilized by methanotrophic bacteria to produce organics, which could be used by denitrifying bacteria to reduce nitrite. Methanotrophic archaea could also oxidize methane to carbon dioxide or organics by reverse methanogenesis whereas sulfate was reduced to sulfide by SRB. This study opens possibility for biotechnological process of sulfate reduction and denitrification with methane as electron donor and provides a method for the synergistic treatment of wastewater containing sulfate/nitrite and waste gas containing methane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.