Abstract
The Rayleigh–Taylor instability (RTI) of the inner surface of an inertial confinement fusion shell is studied through high-resolution two-dimensional numerical simulations. The instability is seeded by a mass displacement introduced in the simulations at the end of the implosion coasting stage. Analysis of single-mode, small-amplitude perturbations confirms that ablation caused by electron conduction and fusion alpha-particles causes significant growth reduction of all modes and stabilization of high-l modes. Different measures of the instability are discussed and compared with modified Takabe-like expressions. Large-amplitude multi-mode simulations are performed to study the effects of RTI on ignition and burn. RTI perturbations reduce the size of the central hot spot and delay ignition. For a few different perturbation spectra the dependence of fusion yield on the initial perturbation root mean square amplitude is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.