Abstract

Abstract Illuminating the phenotype–genotype black box under complex traits is an ambitious goal for researchers. The generation of temporally or spatially phenotypic data today has far outpaced its interpretation, due to their highly dynamic nature depending on the environment and developmental stages. Here we propose an integrated enviro-pheno-geno functional approach to pinpoint the major challenges of decomposing physiological traits. The strategy first features high-throughput functional physiological phenotyping (FPP) to efficiently acquire phenotypic and environmental data. It then features functional mapping (FM) and the extended systems mapping (SM) to tackle trait dynamics. FM, by modeling traits as continuous functions, can increase the power and efficiency in dissecting the spatiotemporal effects of QTLs. SM could enable reconstruction of a genotype–phenotype map from developmental pathways. We present a recent case study that combines FPP and SM to dissect complex physiological traits. This integrated approach will be an important engine to drive the translation of phenomic big data into genetic gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.