Abstract

AimIn many cases, the dynamics of psychotherapeutic change processes is characterized by sudden and critical transitions. In theoretical terms, these transitions may be “phase transitions” of self-organizing nonlinear systems. Meanwhile, a variety of methods is available to identify phase transitions even in short time series. However, it is still an open question if different methods for timeseries analysis reveal convergent results indicating the moments of critical transitions and related precursors.Methods and ProceduresSeven concepts which are commonly used in nonlinear time series analysis were investigated in terms of their ability to identify changes in psychological time series: Recurrence Plots, Change Point Analysis, Dynamic Complexity, Permutation Entropy, Time Frequency Distributions, Instantaneous Frequency, and Synchronization Pattern Analysis, i.e., the dynamic inter-correlation of the system’s variables. Phase transitions were simulated by shifting control parameters in the Hénon map dynamics, in a simulation model of psychotherapy processes (one by an external shift of the control parameter and one created by a simulated control parameter shift), and three sets of empirical time series generated by daily self-ratings of patients during the treatment.ResultsThe applied methods showed converging results indicating the moments of dynamic transitions within an acceptable tolerance. The convergence of change points was confirmed statistically by a comparison to random surrogates. In the three simulated dynamics with known phase transitions, these could be identified, and in the empirical cases, the methods converged indicating one and the same transition (possibly the phase transitions of the cases). Moreover, changes that did not manifest in a shift of mean or variance could be detected.ConclusionChanges can occur in many different ways in the psychotherapeutic process. For instance, there can be very slow and small transitions or very high and sudden ones. The results show the validity and stability of different measures indicating pattern transitions and/or early warning signals of those transitions. This has profound implications for real-time monitoring in psychotherapy, especially in cases where a transition is not obvious to the eye. Reliably identifying points of change is mandatory also for research on precursors, which in turn can help improving treatment.

Highlights

  • During the last decades, theories and methods of nonlinear dynamic systems got in the focus of psychotherapy and counseling research

  • The aim of this article is to get an estimate of the validity and stability of different measures indicating pattern transitions and/or early warning signals of those transitions in nonlinear and non-stationary systems

  • In the following we apply different linear and nonlinear methods of time series analysis to model systems and to empirical systems undergoing a significant transition

Read more

Summary

Introduction

Theories and methods of nonlinear dynamic systems got in the focus of psychotherapy and counseling research. One important quality of nonlinear dynamic systems is their ability to spontaneously create patterns which are not imposed from the outside, but emerge from the interactions of subsystems or parts of a system. Phase transitions occur by shifting one or more control parameter(s) which change the energy dissipation or other conditions of system functioning, e.g., the nonlinear interactions between components or subsystems. Control parameters and boundary conditions often are not stable but for their part evolving and unstable, with the consequence that dynamic patterns (attractors) are changing and after a transient period are moving into new patterns. This is what Haken (2004) calls “quasi-attractors.”. This is what Haken (2004) calls “quasi-attractors.” Given these restrictions of the concept of “phase transitions,” we call changing patterns which do not fulfill all definitory criteria of the concept by the weaker term of “order transitions” (Haken and Schiepek, 2010)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call