Abstract
Hirudin variant 1 (HV1), a small protein consisting of 65 amino acids and three disulfide bonds, was synthesized by using Fmoc-based convergent methods on 2-chlorotrityl resin (CLTR). The linear sequence was assembled by the sequential condensation of 7 protected fragments, on the resin-bound 55-65 fragment. The conditions of fragment assembly were carefully studied to determine the most efficient synthetic protocol. Crude reduced [Cys(16, 28)(Acm)]-HV1 thus obtained was easily purified to homogeneity by RP-HPLC. Disulfide bridges were successfully formed by a two-step procedure, involving an oxidative folding step to form Cys(6)-Cys(14) and Cys(22)-Cys(39) linkages, followed by iodine oxidation to form the Cys(16)-Cys(28) bond. The correct disulfide bond alignment was established by peptide mapping using Staphylococcus aureus V8 protease at pH 4.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.