Abstract

Oxidation of methionine (Met) to Met sulfoxide (MetSO) is a frequently found reversible posttranslational modification. It has been presumed that the major functional role for oxidation-labile Met residues is to protect proteins/cells from oxidative stress. However, Met oxidation has been established as a key mechanism for direct regulation of a wide range of protein functions and cellular processes. Furthermore, recent reports suggest an interaction between Met oxidation and O-phosphorylation. Such interactions are a potentially direct interface between redox sensing and signaling, and cellular protein kinase/phosphatase-based signaling. Herein, we describe the current state of Met oxidation research, provide some mechanistic insight into crosstalk between these two major posttranslational modifications, and consider the evolutionary significance and regulatory potential of this crosstalk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.