Abstract
We report the first shock-tube experiments on two-dimensional dual-mode air–SF $_6$ interfaces with different initial spectra subjected to a convergent shock wave. The convergent shock tube is specially designed with a tail opening to highlight the Bell–Plesset (BP) and mode-coupling effects on amplitude development of fundamental mode (FM). The results show that the BP effect promotes the occurrence of mode coupling, and the feedback of high-order modes to the FM also arises earlier in convergent geometry than that in its planar counterpart. Relatively, the amplitude growth of the FM with a higher mode number is inhibited by the feedback, and saturates earlier. The FM with a lower mode number is affected more heavily by the BP effect, and finally dominates the flow. A new model is proposed to well predict the amplitude growths of the FM and high-order modes in convergent geometry. In particular, for FM that reaches its saturation amplitude, the post-saturation relation is introduced in the model to achieve a better prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.