Abstract

We study the stochastic total variation flow (STVF) equation with linear multiplicative noise. By considering a limit of a sequence of regularized stochastic gradient flows with respect to a regularization parameter varepsilon we obtain the existence of a unique variational solution of the STVF equation which satisfies a stochastic variational inequality. We propose an energy preserving fully discrete finite element approximation for the regularized gradient flow equation and show that the numerical solution converges to the solution of the unregularized STVF equation. We perform numerical experiments to demonstrate the practicability of the proposed numerical approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.