Abstract

The pervasive nature of handedness across human history and cultures is a salient consequence of brain lateralization. This paper presents evidence that provides a structure for understanding the motor control processes that give rise to handedness. According to the Dynamic Dominance Model, the left hemisphere (in right handers) is proficient for processes that predict the effects of body and environmental dynamics, while the right hemisphere is proficient at impedance control processes that can minimize potential errors when faced with unexpected mechanical conditions, and can achieve accurate steady-state positions. This model can be viewed as a motor component for the paradigm of brain lateralization that has been proposed by Rogers et al. (MacNeilage et al., 2009) that is based upon evidence from a wide range of behaviors across many vertebrate species. Rogers proposed a left-hemisphere specialization for well-established patterns of behavior performed in familiar environmental conditions, and a right hemisphere specialization for responding to unforeseen environmental events. The dynamic dominance hypothesis provides a framework for understanding the biology of motor lateralization that is consistent with Roger's paradigm of brain lateralization.

Highlights

  • AND CONCLUSIONS This paper presented evidence for the Dynamic Dominance Model of motor lateralization that proposes a left hemisphere (in right-handers) specialization for processes that predict the effects of limb and task dynamics, given consistent mechanical conditions, and a right hemisphere specialization for impedance control mechanisms that can minimize potential errors when faced with unexpected mechanical events

  • AND CONCLUSIONS This paper presented evidence for the Dynamic Dominance Model of motor lateralization that proposes a left hemisphere specialization for processes that predict the effects of limb and task dynamics, given consistent mechanical conditions, and a right hemisphere specialization for impedance control mechanisms that can minimize potential errors when faced with unexpected mechanical events

  • This model forms a motor specific component to the broader paradigm of brain lateralization that has been proposed by Rogers et al. (MacNeilage et al., 2009)

Read more

Summary

Introduction

AND CONCLUSIONS This paper presented evidence for the Dynamic Dominance Model of motor lateralization that proposes a left hemisphere (in right-handers) specialization for processes that predict the effects of limb and task dynamics, given consistent mechanical conditions, and a right hemisphere specialization for impedance control mechanisms that can minimize potential errors when faced with unexpected mechanical events. This model forms a motor specific component to the broader paradigm of brain lateralization that has been proposed by Rogers et al.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.