Abstract

Tailoring the properties of two-dimensional (2D) crystals is important for both understanding the material behavior and exploring new functionality. Here we demonstrate the alteration of MoS2 and metal-MoS2 interfaces using a convergent ion beam. Different beam energies, from 60 eV to 600 eV, are shown to have distinct effects on the optical and electrical properties of MoS2. Defects and deformations created across different layers were investigated, revealing an unanticipated improvement in the Raman peak intensity of multilayer MoS2 when exposed to a 60 eV Ar+ ion beam, and attenuation of the MoS2 Raman peaks with a 200 eV ion beam. Using cross-sectional scanning transmission electron microscopy (STEM), alteration of the crystal structure after a 600 eV ion beam bombardment was observed, including generated defects and voids in the crystal. We show that the 60 eV ion beam yields improvement in the metal-MoS2 interface by decreasing the contact resistance from 17.5 kΩ · µm to 6 kΩ · µm at a carrier concentration of n2D = 5.4 × 1012 cm−2. These results advance the use of low-energy ion beams to modify 2D materials and interfaces for tuning and improving performance in applications of sensors, transistors, optoelectronics, and so forth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.