Abstract

BackgroundThe vast majority of nematode species have vermiform (worm-shaped) body plans throughout post-embryonic development. However, atypical body shapes have evolved multiple times. The plant-parasitic Tylenchomorpha nematode Heterodera glycines hatches as a vermiform infective juvenile. Following infection and the establishment of a feeding site, H. glycines grows disproportionately greater in width than length, developing into a saccate adult. Body size in Caenorhabditis elegans was previously shown to correlate with post-embryonic divisions of laterally positioned stem cell-like ‘seam’ cells and endoreduplication of seam cell epidermal daughters. To test if a similar mechanism produces the unusual body shape of saccate parasitic nematodes, we compared seam cell development and epidermal ploidy levels of H. glycines to C. elegans. To study the evolution of body shape development, we examined seam cell development of four additional Tylenchomorpha species with vermiform or saccate body shapes.ResultsWe confirmed the presence of seam cell homologs and their proliferation in H. glycines. This results in the adult female epidermis having approximately 1800 nuclei compared with the 139 nuclei in the primary epidermal syncytium of C. elegans. Similar to C. elegans, we found a significant correlation between H. glycines body volume and the number and ploidy level of epidermal nuclei. While we found that the seam cells also proliferate in the independently evolved saccate nematode Meloidogyne incognita following infection, the division pattern differed substantially from that seen in H. glycines. Interestingly, the close relative of H. glycines, Rotylenchulus reniformis does not undergo extensive seam cell proliferation during its development into a saccate form.ConclusionsOur data reveal that seam cell proliferation and epidermal nuclear ploidy correlate with growth in H. glycines. Our finding of distinct seam cell division patterns in the independently evolved saccate species M. incognita and H. glycines is suggestive of parallel evolution of saccate forms. The lack of seam cell proliferation in R. reniformis demonstrates that seam cell proliferation and endoreduplication are not strictly required for increased body volume and atypical body shape. We speculate that R. reniformis may serve as an extant transitional model for the evolution of saccate body shape.

Highlights

  • The vast majority of nematode species have vermiform body plans throughout postembryonic development

  • The C. elegans seam cells have a distinctive eye-shaped appearance using light microscopy with differential interference contrast (DIC) optics; due to the highly refractile optical properties of the pre-infective H. glycines J2 s, we were not able to observe any seam cell-like structures at this stage

  • We found that J2 M. incognita extracted soon after infection have a line of epidermal cells along the lateral seam morphologically similar to H. glycines and C. elegans seam cells (Fig. 16a) [10]

Read more

Summary

Introduction

The vast majority of nematode species have vermiform (worm-shaped) body plans throughout postembryonic development. The plant-parasitic Tylencho‐ morpha nematode Heterodera glycines hatches as a vermiform infective juvenile. Following infection and the estab‐ lishment of a feeding site, H. glycines grows disproportionately greater in width than length, developing into a saccate adult. To test if a similar mech‐ anism produces the unusual body shape of saccate parasitic nematodes, we compared seam cell development and epidermal ploidy levels of H. glycines to C. elegans. Several diverse nematode species develop from vermiform juveniles into saccate adult females. Among Tylenchomorpha nematodes, several of the most economically damaging plant-parasitic nematode species develop into saccate-shaped adult females following infection [3]. Heterodera glycines hatches as a vermiform infective second-stage juvenile (J2). Following infection and the establishment of a feeding site, H. glycines females grow disproportionately greater in width than length, developing into saccate-shaped adults. During the final juvenile stage (J4), males remodel into vermiform adults

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call