Abstract

Summary The majority of plant colours are produced by anthocyanin and carotenoid pigments, but colouration obtained by nanostructured materials (i.e. structural colours) is increasingly reported in plants. Here, we identify a multilayer photonic structure in the fruits of Lantana strigocamara and compare it with a similar structure in Viburnum tinus fruits.We used a combination of transmission electron microscopy (EM), serial EM tomography, scanning force microscopy and optical simulations to characterise the photonic structure in L. strigocamara. We also examine the development of the structure during maturation.We found that the structural colour derives from a disordered, multilayered reflector consisting of lipid droplets of c.105 nm that form a plate‐like structure in 3D. This structure begins to form early in development and reflects blue wavelengths of light with increasing intensity over time as the structure develops. The materials used are likely to be lipid polymers. Lantana strigocamara is the second origin of a lipid‐based photonic structure, convergently evolved with the structure in Viburnum tinus. Chemical differences between the lipids in L. strigocamara and those of V. tinus suggest a distinct evolutionary trajectory with implications for the signalling function of structural colours in fruits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.