Abstract

Convergent evolution describes the process of different populations acquiring similar phenotypes or genotypes. Complex organisms with large genomes only rarely and only under very strong selection converge to the same genotype. In contrast, independent virus populations with very small genomes often acquire identical mutations. Here we test the hypothesis of whether convergence in early HIV-1 infection is common enough to serve as an indicator for selection. To this end, we measure the number of convergent mutations in a well-studied dataset of full-length HIV-1 env genes sampled from HIV-1 infected individuals during early infection. We compare this data to a neutral model and find an excess of convergent mutations. Convergent mutations are not evenly distributed across the env gene, but more likely to occur in gp41, which suggests that convergent mutations provide a selective advantage and hence are positively selected for. In contrast, mutations that are only found in an HIV-1 population of a single individual are significantly affected by purifying selection. Our analysis suggests that comparisons between convergent and private mutations with neutral models allow us to identify positive and negative selection in small viral genomes. Our results also show that selection significantly shapes HIV-1 populations even before the onset of the adaptive immune system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.