Abstract

The atomic hydrogen target has played a pivotal role in the development of quantum collision theory. The key complexities of computationally managing the countably infinite discrete states and the uncountably infinite continuum were solved by using atomic hydrogen as the prototype atomic target. In the case of positron or proton scattering the extra complexity of charge exchange was also solved using the atomic hydrogen target. Most recently, molecular hydrogen has been used successfully as a prototype molecule for developing the corresponding scattering theory. We concentrate on the convergent close-coupling computational approach to light projectiles, such as electrons and positrons, and heavy projectiles, such as protons and antiprotons, scattering on atomic and molecular hydrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.