Abstract

The deformation induced onto silicon by the formation of Ti self-aligned silicides (salicides) in shallow trench isolation structures has been investigated by the convergent beam electron diffraction technique (CBED) in the transmission electron microscope (TEM). The splitting of the high order Laue zone (HOLZ) lines in the CBED patterns taken in TEM cross sections close to the salicide/silicon interface has been explained assuming that the salicide grains induce a local bending of the lattice planes of the underlying matrix. This bending, which affects in opposite sense the silicon areas below adjacent grains, decreases with the distance from the interface, eventually vanishing at a depth of 300–400nm. The proposed strain field has been implemented into a fully dynamical simulation of the CBED patterns and has proved to be able to reproduce both the asymmetry of the HOLZ line splitting and the associated subsidiary fringes. This model is confirmed by the shift of a Bragg contour observed in large angle CBED patterns, taken in a cross section cut along a perpendicular direction. The whole experimental results cannot be explained by just a strain relaxation of the TEM cross section, induced by the salicide film onto the underlying silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.