Abstract

This paper presents an improved algorithm for the bi-directional evolutionary structural optimization (BESO) method for topology optimization problems. The elemental sensitivity numbers are calculated from finite element analysis and then converted to the nodal sensitivity numbers in the design domain. A mesh-independency filter using nodal variables is introduced to determine the addition of elements and eliminate unnecessary structural details below a certain length scale in the design. To further enhance the convergence of the optimization process, the accuracy of elemental sensitivity numbers is improved by its historical information. The new approach is demonstrated by solving several compliance minimization problems and compared with the solid isotropic material with penalization (SIMP) method. Results show the effectiveness of the new BESO method in obtaining convergent and mesh-independent solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.