Abstract
We prove that a space-time hybridized discontinuous Galerkin method for the evolutionary Navier–Stokes equations converges to a weak solution as the time step and mesh size tend to zero. Moreover, we show that this weak solution satisfies the energy inequality. To perform our analysis, we make use of discrete functional analysis tools and a discrete version of the Aubin–Lions–Simon theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.