Abstract

We consider the random recursion $X_{n}^{x}=M_nX_{n-1}^{x}+Q_n+N_n(X_{n-1}^{x})$, where $x\in\mathbb R$ and $(M_n, Q_n, N_n)$ are i.i.d., $Q_n$ has a heavy tail with exponent $\alpha>0$, the tail of $M_n$ is lighter and $N_n(X_{n-1}^{x})$ is smaller at in

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.