Abstract

In this paper, we investigate the Cauchy problem for a quasi-linear hyperbolic-parabolic chemotaxis system modelling vasculogenesis. As Liu, Peng and Wang pointed out in [20], the smooth solutions of Cauchy problem for this system globally exist and converge to the shifted nonlinear diffusion waves. It is worth noting that due to the difficulty in constructing a group of correction functions to eliminate the gaps between the original solutions and the diffusion waves at infinity, they got their results under the stiff conditions m±=0 and ϕ±=abρ±. However, by a deep observation, we realize that these two conditions can be removed. In this paper, by making full use of the results obtained in [20], and with the help of a group of new correction functions, we get some more general results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.