Abstract

Using the fundamental solution of the heat equation, we give an expression of the solutions to two-dimensional initial-boundary value problems of the Navier-Stokes equations, where the vorticity is expressed in terms of a Poisson integral, a Newtonian potential, and a single layer potential. The density of the single layer potential is the solution to an integral equation of Volterra type along the boundary. We prove there is a unique solution to the integral equation. One fractional time step approximation is given, based on this expression. Error estimates are obtained for linear and nonlinear problems. The order of convergence is 1/4 for the Navier-Stokes equations. The result is in the direction of justifying the Chorin-Marsden formula for vortex methods. It is shown that the density of the vortex sheet is twice the tangential velocity for the half plane, while in general the density differs from it by one additional term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.