Abstract

We study the performance of the least squares estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$th moment ($p\geq1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard “entropy condition” with exponent $\alpha\in(0,2)$, then the $L_{2}$ loss of the LSE converges at a rate \[\mathcal{O}_{\mathbf{P}}\bigl(n^{-\frac{1}{2+\alpha}}\vee n^{-\frac{1}{2}+\frac{1}{2p}}\bigr).\] Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $p\geq1+2/\alpha$ moments, the $L_{2}$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/\alpha$, there are (many) hard models at any entropy level $\alpha$ for which the $L_{2}$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_{2}$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the “multiplier empirical process” associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call