Abstract

This paper investigates the large-time asymptotic behavior of the sensitivities of cash flows. In quantitative finance, the price of a cash flow is expressed in terms of a pricing operator of a Markov diffusion process. We study the extent to which the pricing operator is affected by small changes of the underlying Markov diffusion. The main idea is a partial differential equation (PDE) representation of the pricing operator by incorporating the Hansen–Scheinkman decomposition method. The sensitivities of the cash flows and their large-time convergence rates can be represented via simple expressions in terms of eigenvalues and eigenfunctions of the pricing operator. Furthermore, compared to the work of Park (Finance Stoch 4:773–825, 2018), more detailed convergence rates are provided. In addition, we discuss the application of our results to three practical problems: utility maximization, entropic risk measures, and bond prices. Finally, as examples, explicit results for several market models such as the Cox–Ingersoll–Ross (CIR) model, 3/2 model and constant elasticity of variance (CEV) model are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call