Abstract

We extend Marcinkievicz–Zygmund strong laws of large numbers for martingales to weakly dependent random variables with values in smooth Banach spaces. The conditions are expressed in terms of conditional expectations. In the case of Hilbert spaces, we show that our conditions are weaker than optimal ones for strongly mixing sequences (which were previously known for real-valued variables only). As a consequence, we give rates of convergence for Cramér–von Mises statistics and for the empirical estimator of the covariance operator of a Hilbert-valued autoregressive process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.