Abstract
The effect of long-range dependence in nonparametric probability density estimation is investigated under the assumption that the observed data are a sample from a stationary, infinite-order moving average process. It is shown that to first order, the mean integrated squared error (MISE) of a kernel estimator for moving average data may be expanded as the sum of MISE of the kernel estimator for a same-sizerandom sample, plus a term proportional to the variance of the moving average sample mean. The latter term does not depend on bandwidth, and so imposes a ceiling on the convergence rate of a kernel estimator regardless of how bandwidth is chosen. This ceiling can be quite significant in the case of long-range dependence. We show thatall density estimators have the convergence rate ceiling possessed by kernel estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.