Abstract

Sampling from constrained distributions has posed significant challenges in terms of algorithmic design and non-asymptotic analysis, which are frequently encountered in statistical and machine-learning models. In this study, we propose three sampling algorithms based on Langevin Monte Carlo with the Metropolis-Hastings steps to handle the distribution constrained within some convex body. We present a rigorous analysis of the corresponding Markov chains and derive non-asymptotic upper bounds on the convergence rates of these algorithms in total variation distance. Our results demonstrate that the sampling algorithm, enhanced with the Metropolis-Hastings steps, offers an effective solution for tackling some constrained sampling problems. The numerical experiments are conducted to compare our methods with several competing algorithms without the Metropolis-Hastings steps, and the results further support our theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.