Abstract
We consider a class of particle systems which appear in various applications such as approximation theory, plasticity, potential theory and space-filling designs. The positions of the particles on the real line are described as a global minimum of an interaction energy, which consists of a nonlocal, repulsive interaction part and a confining part. Motivated by the applications, we cover non-standard scenarios in which the confining potential weakens as the number of particles increases. This results in a large area over which the particles spread out. Our aim is to approximate the particle interaction energy by a corresponding continuum interacting energy. Our main results are bounds on the corresponding energy difference and on the difference between the related potential values. We demonstrate that these bounds are useful to problems in approximation theory and plasticity. The proof of these bounds relies on convexity assumptions on the interaction and confining potentials. It combines recent advances in the literature with a new upper bound on the minimizer of the continuum interaction energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.