Abstract

We investigate an inertial algorithm of gradient type in connection with the minimization of a non-convex differentiable function. The algorithm is formulated in the spirit of Nesterov’s accelerated convex gradient method. We prove some abstract convergence results which applied to our numerical scheme allow us to show that the generated sequences converge to a critical point of the objective function, provided a regularization of the objective function satisfies the Kurdyka–Łojasiewicz property. Further, we obtain convergence rates for the generated sequences and the objective function values formulated in terms of the Łojasiewicz exponent of a regularization of the objective function. Finally, some numerical experiments are presented in order to compare our numerical scheme and some algorithms well known in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.