Abstract
We establish a quantitative version of the Tracy–Widom law for the largest eigenvalue of high-dimensional sample covariance matrices. To be precise, we show that the fluctuations of the largest eigenvalue of a sample covariance matrix X∗X converge to its Tracy–Widom limit at a rate nearly N−1/3, where X is an M×N random matrix whose entries are independent real or complex random variables, assuming that both M and N tend to infinity at a constant rate. This result improves the previous estimate N−2/9 obtained by Wang (2019). Our proof relies on a Green function comparison method (Adv. Math. 229 (2012) 1435–1515) using iterative cumulant expansions, the local laws for the Green function and asymptotic properties of the correlation kernel of the white Wishart ensemble.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.