Abstract

It is known that the empirical spectral distribution of random matrices obtained from linear codes of increasing length converges to the well-known Marchenko-Pastur law, if the Hamming distance of the dual codes is at least 5. In this paper, we prove that the convergence in probability is at least of the order $n^{-1/4}$ where $n$ is the length of the code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.